874. Proton Chemical Shifts in the Nuclear Magnetic Resonance Spectra of Transition-metal Hydrides: Square-planar Platinum(II) Complexes.

By A. D. BUCKINGHAM and P. J. STEPHENS.

The recent theory ¹ of the very large high-field shifts in the proton magnetic resonance spectra of transition-metal hydrides is applied to squareplanar d^8 complexes, with special attention to platinum(II) compounds. The high-field shifts in *trans*-PtHX(PEt₃)₂ complexes are attributed mainly to paramagnetic shielding of the proton by the Pt 5*d*-electrons. Shifts ~ 20 p.p.m. are obtained for a Pt-H bond length $R \sim 3$ a.u. (atomic units). Chemical shifts are chiefly caused by changes in *R* associated with variations in the "*trans*-effect" of the ligand X. Large low-field shifts are predicted for protons above the molecular plane. Somewhat different shielding constants are expected for the deuterium analogues of the transition-metal hydrides.

In another Paper¹ we suggested an explanation of the very large high-field shifts in the proton magnetic resonance spectra of octahedral transition-metal hydrides. The shift was attributed mainly to paramagnetic shielding by the incomplete *d*-electron subshell. The same general theory is here applied to square-planar low-spin platinum(II) hydrides.

Theory.—The mean shielding constant σ , of a proton H at a distance R along the x-axis from a metal atom M can be written [eqns. (3) and (4) in ref. 1]

where

 $\sigma = \sigma^d + \sigma^p$

$$\sigma^{d} = \frac{e^{2}}{3 mc^{2}} \langle 0 | \sum_{j} r_{Hj}^{-3} (r_{Hj}^{2} + Rx_{Hj}) | 0 \rangle$$

$$\sigma^{p} = \frac{1}{3} (\sigma^{p}_{xx} + \sigma^{p}_{yy} + \sigma^{p}_{zz}) \qquad (1)$$

$$\sigma^{p}_{xx} = -\frac{e^{2}}{2m^{2}c^{2}} \sum_{n \neq 0} (E_{n} - E_{o})^{-1} [\langle 0 | \sum_{j} l_{M_{xj}} | n \rangle \langle n | \sum_{k} r_{Hk}^{-3} l_{H_{xk}} | 0 \rangle + \langle 0 | \sum_{k} r_{Hk}^{-3} l_{H_{xk}} | n \rangle \langle n | \sum_{k} l_{M_{xj}} | 0 \rangle]$$

with analogous expressions for σ^{p}_{yy} and σ^{p}_{zz} . $|0\rangle$ and $|n\rangle$ are ground and excited state molecular wave-functions of energies E_{o} and E_{n} , respectively, and $l_{\rm H}$ and $l_{\rm M}$ are the one-electron angular momentum operators relating to motion about the proton and M.

The platinum *d*-electron contribution to σ is evaluated using the ligand-field theoretical description of the ground and excited states. Only one-electron excitations to singlet states contribute to σ^p ; spin-orbit coupling and configuration interaction are neglected. For a PtH₄²⁻ ion of D_{4h} symmetry, the *d*-orbital splitting and the relevant states are shown in Figs. 1 and 2. The wave-functions of the states are

$$\begin{split} {}^{1}A_{1g}a_{1} &= |d_{z^{2}}^{2}d_{yz}^{2}d_{zx}^{2}d_{xy}^{2}\rangle \\ {}^{1}A_{2g}a_{2} &= |d_{z^{2}}^{2}d_{yz}^{2}d_{zx}^{2}d_{xy}d_{x^{2}-y^{2}}\rangle \\ {}^{1}E_{g}x &= |d_{z^{2}}^{2}d_{yz}^{2}d_{zx}^{2}d_{xy}^{2}d_{x^{2}-y^{2}}\rangle \\ {}^{1}E_{g}y &= |d_{z^{2}}^{2}d_{yz}^{2}d_{zx}d_{xy}^{2}d_{x^{2}-y^{1}}\rangle \\ {}^{1}B_{1g}b_{1} &= |d_{z^{2}}d_{yz}^{2}d_{zx}^{2}d_{xy}^{2}d_{x^{2}-y^{1}}\rangle \end{split}$$

$$(2)$$

where $|d_{z^{*2}}d_{yz}^{2}d_{zx}^{2}d_{xy}d_{x^{*}-y^{*}}\rangle$ is short for $\frac{1}{\sqrt{2}}[|d_{z^{*2}}d_{yz}^{2}d_{zx}^{2}d_{xy}^{+}d_{x^{*}-y^{*}}\rangle - |d_{z^{*2}}d_{yz}^{2}d_{zx}^{2}d_{xy}^{-}d_{x^{*}-y^{*}}\rangle]$, $|\rangle$ indicates a normalised determinantal wave-function, $\phi^{2} = \phi^{+}\phi^{-}$ and + and - denote

¹ Buckingham and Stephens, J., 1964, 2747.

 α and β spins, respectively. The symmetry notation follows Griffith.² In C_{2v} complexes of type *trans*-PtHXY₂ (the only type for which n.m.r. data exist) the degeneracy of d_{yz} and d_{zx} , and hence of the ¹E state, is lifted.

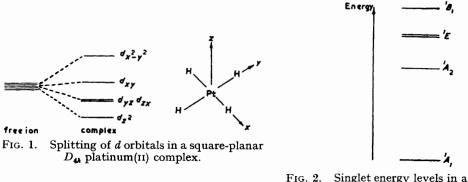


FIG. 2. Singlet energy levels in a squareplanar D_{44} platinum(II) complex.

We assume that the *d*-orbitals can be represented by single Slater orbitals of exponent k (the same for all *d*-orbitals of the same shell); the required matrix elements can then be derived from the general expressions of Pitzer, Kern, and Lipscomb.³ Substituting (2) in (1) we obtain *

$$\sigma^{d} = \frac{2e^{2}}{3mc^{2}R} \left\{ \frac{180}{7\rho^{2}} + \frac{75240}{7\rho^{4}} + e^{-\rho} \left[\frac{\rho^{8}}{32256} + \frac{\rho^{7}}{4608} + \frac{\rho^{6}}{5376} - \frac{79\rho^{5}}{5376} - \frac{37\rho^{4}}{168} - \frac{235\rho^{3}}{112} \right] - \frac{31\rho^{2}}{2} - \frac{1307\rho}{14} - \frac{3225}{7} - \frac{12720}{7\rho} - \frac{5400}{\rho^{2}} - \frac{75240}{7\rho^{3}} - \frac{75240}{7\rho^{4}} \right] \right\}$$

$$\sigma^{p}_{xx} = \frac{-2e^{2}\hbar^{2}}{m^{2}c^{2}R^{3}\Delta E_{E}} \left\{ 1 - \frac{270}{7\rho^{2}} + e^{-\rho} \left[\frac{\rho^{5}}{1344} + \frac{5\rho^{4}}{336} + \frac{53\rho^{3}}{336} + \frac{31\rho^{2}}{28} + \frac{38\rho}{7} + \frac{128}{7\rho^{2}} + \frac{270}{7\rho} + \frac{270}{7\rho^{2}} \right] \right\} (3)$$

$$\sigma^{p}_{yy} = \frac{e^{2}\hbar^{2}}{m^{2}c^{2}R^{3}\Delta E_{E}} \left\{ 1 + \frac{1215}{7\rho^{2}} - e^{-\rho} \left[\frac{\rho^{8}}{5376} + \frac{\rho^{7}}{896} + \frac{19\rho^{6}}{2688} + \frac{31\rho^{5}}{672} + \frac{97\rho^{4}}{336} + \frac{34\rho^{3}}{336} + \frac{433\rho^{2}}{56} + \frac{419\rho}{14} + \frac{1229}{14} + \frac{1215}{7\rho} + \frac{1215}{7\rho^{2}} \right] \right\}$$

$$\sigma^{p}_{zz} = \frac{2e^{2}\hbar^{2}}{m^{2}c^{2}R^{3}\Delta E_{A}} \left\{ 2 + \frac{405}{7\rho^{2}} - e^{-\rho} \left[\frac{\rho^{8}}{5376} + \frac{\rho^{7}}{896} + \frac{17\rho^{6}}{2688} + \frac{23\rho^{5}}{672} + \frac{59\rho^{4}}{336} + \frac{139\rho^{3}}{168} + \frac{191\rho^{2}}{56} + \frac{163\rho}{14} + \frac{433}{14} + \frac{405}{7\rho} + \frac{405}{7\rho^{2}} \right] \right\}$$

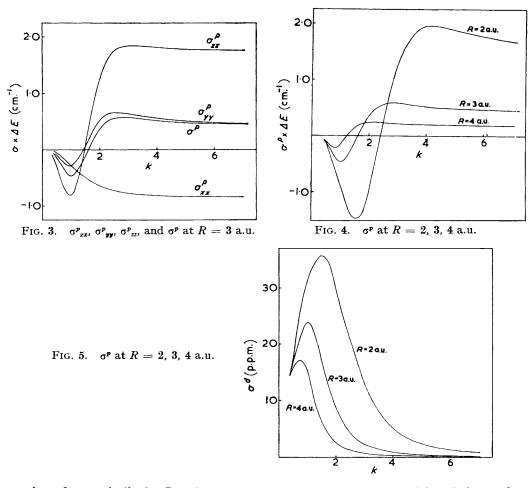
where $\rho = 2kR$, $\Delta E_A = E({}^{1}A_2) - E({}^{1}A_1)$, and $\Delta E_E = E({}^{1}E) - E({}^{1}A_1)$. The ${}^{1}B_1$ state does not contribute to σ^p . Eqns. (3) reduce in the limit of $k \to \infty$ to the results obtained by the near-neighbour approximation (NNA) [with the same wave-functions ¹] and in the limit of R = 0 to the *d*-electron contribution to the shielding of the Pt nucleus, namely,

$$\sigma^{p}_{xx} = \sigma^{p}_{yy} = -\frac{2e^{2}\hbar^{2}r^{-3}}{m^{2}c^{2}\Delta E_{E}} = -\frac{e^{2}\hbar^{2}k^{3}}{21m^{2}c^{2}\Delta E_{E}}; \ \sigma^{p}_{zz} = -\frac{8e^{2}\hbar^{2}r^{-3}}{m^{2}c^{2}\Delta E_{A}}$$
(4)

* σ^{d} and σ^{p} henceforth represent only the Pt *d*-electron contribution to the total shielding.

- ² Griffith, "The Theory of Transition-metal Ions," Cambridge University Press, 1961.
- ³ Pitzer, Kern, and Lipscomb, J. Chem. Phys., 1962, 37, 267.

It is interesting that here even the NNA predicts a high-field shift (unlike octahedral d^6 complexes) since the paramagnetic susceptibility due to $d \longrightarrow d$ excitations is greater (actually 4 times) perpendicular to the plane than in the plane. Eqn. (3) has been



evaluated numerically for R = 2, 3, and 4 a.u. as functions of ΔE and k and the results are illustrated in Figs. 3-5; σ^p was calculated assuming all ΔE values to be equal.

Application.--The available 7 n.m.r. data on platinum(II) hydrides are in the Table.

τ for trans-PtHX(PEt ₃) ₂ .							
X	NO ₃ 33·8	Cl 26·9	Br 25:6	${}^{\mathrm{I}}_{22\cdot7}$	NO ₂ 29:7	NCS 2 3 ·2, 27·9	CN
au	99.0	20.9	23.0	22.1	29.1	23.2, 21.3	11.9

We assume that local shielding alone gives $\tau = 5$ and the shift to be explained is therefore $\tau - 5$. Before estimating σ , *R*, *k*, and ΔE must be considered:

(i) R: R has not been measured in a platinum(II) complex, although it is hoped to do this, using the effect of partial molecular orientation on the n.m.r. spectrum.⁴ At present, $R \sim 3$ a.u. seems likely.

(ii) k: reliable calculations of wave-functions for third series transition-metals have not been made. In the earlier Paper,¹ k for Os^{2+} and Ir^{3+} was estimated to be between 3 and 4 and this is reasonable for Pt^{2+} also.

⁴ Buckingham and Lovering, Trans. Faraday Soc., 1962, 58, 2077.

4585

4586 Proton Chemical Shifts in the Nuclear Magnetic Resonance Spectra, etc.

(iii) ΔE : so far, there are no spectral data on platinum(II) hydrides and ΔE must be estimated by extrapolation. Unfortunately, even when the spectrum is known there is ambiguity in assigning the $d \longrightarrow d$ bands, and three different assignments of the $PtCl_4^{2-}$ spectrum have been proposed.⁵ However, in all of these $\Delta E_A < \Delta E_E$. In trans-PtHX(PEt₃)₂, ΔE_A is unlikely to be <40,000 cm.⁻¹. Splitting of d_{yz} and d_{zz} is expected to be small and no splitting of the ¹E band has been observed. Since taking $\Delta E_E = \Delta E_A$ only slightly affects σ^p , it can be adequately estimated by assuming all ΔE values to be equal.

 σ^p calculated for $\Delta E = 40,000$ cm.⁻¹ and R = 2, 3, and 4 a.u. is shown in Fig. 6. For 3 < k < 4, $\sigma \sim 20$ p.p.m. at the reasonable R value of 3 a.u., σ^p being the main contributor to σ .

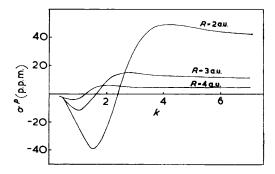


FIG. 6. σ^{p} at R = 2, 3, 4 a.u. with $\Delta E = 40,000 \text{ cm}.^{-1}.$

The changes in τ with ligand X trans to H could be due to variations in R, k, or ΔE . Crystallographic data show that the Pt-L bond length in square-planar Pt^{\dagger} complexes increases with increasing trans-effect of the trans-ligand, the observed variations being 6 over a range ~ 0.5 a.u. This variation in R could change σ^p by 5–10 p.p.m., though this depends sensitively on k. The trans-effect of X is ⁷ in order $NO_3 < Cl < Br < I <$ $NO_2 < NCS < CN$ which is also the order of decreasing τ , except for NO_2 and NCS. The variation in trans-effect from NO_3 to CN is also larger than in the complexes studied crystallographically. Changes in \tilde{R} thus probably contribute appreciably to shifts in τ . The size of the *d*-orbitals might vary with X, but for $R \sim 3$ a.u. and 3 < k < 4, σ varies slowly with k (see Figs. 4 and 6), so it seems unlikely that changes in k affect τ significantly (unless R is substantially smaller than 3 a.u.).

Varying ΔE from 40,000 to 55,000 cm.⁻¹ decreases σ^{p}_{max} at R = 3 a.u. from 15 to 11 p.p.m. Since the change in ΔE from X = NO₃ to CN is probably <10,000 cm.⁻¹, this is unlikely to be the major cause of the τ variations.

On the basis of our model (which separates the R, k, and ΔE contributions to σ) it seems that the changes in τ can be attributed mainly to changes in R. It would be interesting to check this by a direct measurement of R in a series of complexes. The above calculations apply strictly only to complexes with an orthogonal arrangement of ligands around the metal atom. However, X-ray analysis of trans-PtHBr(PEt_a)₂ showed ⁸ that the Br-Pt-P angle is 94°. This distortion might make a small additional contribution to σ .

It was shown for octahedral d^6 hydrides that measurement of the anisotropy in σ would provide a check of the theory; $(\sigma^{p}_{rx} - \sigma^{p}_{zz})$ was predicted to be ~-500 p.p.m. For square-planar Pt^{II} hydrides, $[\sigma_{xx}^p - \frac{1}{2}(\sigma_{yy}^p + \sigma_{zz}^p)]$ for R = 3 a.u. and $\Delta E = 40,000$ cm.⁻¹

⁵ Chatt, Gamlen, and Orgel, J., 1958, 486; Fenske, Martin, and Ruedenberg, Inorg. Chem., 1962, 1,

^{441;} Gray and Ballhausen, J. Amer. Chem. Soc., 1963, 85, 260.
⁶ Basolo and Pearson, "Progress in Inorganic Chemistry," ed. Cotton, Interscience, 1962, 4, 381.
⁷ Chatt and Shaw, J., 1962, 5075.
⁸ Owston, Partridge, and Rowe, Acta Cryst., 1960, 13, 246.

View Online

is only ~ -50 p.p.m., when 3 < k < 4, and is therefore of the same order of magnitude as the anisotropy in σ^{d} and the local shielding.

A prediction of the theory is that protons situated *above* the plane should have large low-field shifts. Suitable structures might be achieved either by protonation with a strong protonating agent (as has been effected for many carbonyl and cyclopentadienyl complexes⁹) the proton being most likely to co-ordinate to the full d_{z^*} orbital, or by using multidentate ligands with alkyl chains connecting *trans*-co-ordinating atoms analogous to the method used in investigating the shielding by the ring current in benzenoid molecules.¹⁰ Protonation might also assist in spectral assignment since the bands would be expected to show shifts in order ${}^{1}A_{2} < {}^{1}E < {}^{1}B_{1}$.

Isotope Effects.—The strong dependence of σ on R suggests that the substitution of D for H might appreciably affect the shielding. The shielding constant can be expanded as a series in $\xi = (R - R_e)/R_e$, where R_e is the equilibrium separation: $\sigma_e + \sigma_e'\xi + \frac{1}{2}\sigma_e''\xi^2 + \ldots$ For the ground vibrational state $\sigma = \sigma_e + \frac{B_e}{2\omega_e}(\sigma_e'' - 3a\sigma_e') + \ldots$

where *a* is the cubic anharmonic constant, B_e the rotational constant, and $c\omega_e$ the harmonic oscillator frequency. σ_{e}' and σ_{e}'' can be estimated using $\sigma^p \sim 250/R^3$ which approximately fits our calculated results in the *k* regions of interest. With a = -3 and $\omega_e = 2000$ and 1414 cm.⁻¹ for H and D, respectively, $\sigma_{\rm H}{}^p \rightarrow \sigma_{\rm D}{}^p = -0.51$ and -0.08 p.p.m. at R = 2 and 3 a.u. (The contributions of σ^d and $\sigma^{\rm local}$ to $\sigma_{\rm H} - \sigma_{\rm D}$ are negligible.) This difference would be readily measurable if $R \sim 2$ a.u.; the contributions of bending vibrations to σ have been neglected.

INORGANIC CHEMISTRY LABORATORY, SOUTH PARKS ROAD, OXFORD.

[Received, November 15th, 1963.]

[•] Curphey, Santer, Rosenblum, and Richards, J. Amer. Chem. Soc., 1960, 82, 5249; Green, McCleverty, Pratt, and Wilkinson, J., 1961, 4854; Davison, McFarlane, Pratt, and Wilkinson, J., 1962, 3653.

¹⁰ Waugh and Fessenden, J. Amer. Chem. Soc., 1957, 79, 846.